Sometimes I have to put text on a path

Tuesday, May 20, 2008

history quantum chemistry

In 1964, Hückel method calculations (using a simple LCAO method for the determination of electron energies of molecular orbitals of π electrons in conjugated hydrocarbon systems) of molecules ranging in complexity from butadiene and benzene to ovalene, were generated on computers at Berkeley and Oxford.[8] These empirical methods were replaced in the 1960s by semi-empirical methods such as CNDO.[9]

In the early 1970s, efficient ab initio computer programs such as ATMOL, GAUSSIAN, IBMOL, and POLYAYTOM, began to be used to speed up ab initio calculations of molecular orbitals. Of these four programs, only GAUSSIAN, now massively expanded, is still in use, but many other programs are now in use. At the same time, the methods of molecular mechanics, such as MM2, were developed, primarily by Norman Allinger.[10]

One of the first mentions of the term “computational chemistry” can be found in the 1970 book Computers and Their Role in the Physical Sciences by Sidney Fernbach and Abraham Haskell Taub, where they state “It seems, therefore, that 'computational chemistry' can finally be more and more of a reality.”[11] During the 1970s, widely different methods began to be seen as part of a new emerging discipline of computational chemistry.[12] The Journal of Computational Chemistry was first published in 1980.

Several major areas may be distinguished within computational chemistry:
  • The prediction of the molecular structure of molecules by the use of the simulation of forces, or more accurate quantum chemical methods, to find stationary points on the energy surface as the position of the nuclei is varied.
  • Storing and searching for data on chemical entities (see chemical databases).
  • Identifying correlations between chemical structures and properties (see QSPR and QSAR).
  • Computational approaches to help in the efficient synthesis of compounds.
  • Computational approaches to design molecules that interact in specific ways with other molecules (e.g. drug design).

----------

Ab initio methods


The programs used in computational chemistry are based on many different quantum-chemical methods that solve the molecular Schrödinger equation associated with the molecular Hamiltonian. Methods that do not include any empirical or semi-empirical parameters in their equations - being derived directly from theoretical principles, with no inclusion of experimental data - are called ab initio methods. This does not imply that the solution is an exact one; they are all approximate quantum mechanical calculations. It means that a particular approximation is rigorously defined on first principles (quantum theory) and then solved within an error margin that is qualitatively known beforehand. If numerical iterative methods have to be employed, the aim is to iterate until full machine accuracy is obtained (the best that is possible with a finite word length on the computer, and within the mathematical and/or physical approximations made).


The simplest type of ab initio electronic structure calculation is the Hartree-Fock (HF) scheme, an extension of molecular orbital theory, in which the correlated electron-electron repulsion is not specifically taken into account; only its average effect is included in the calculation. As the basis set size is increased, the energy and wave function tend towards a limit called the Hartree-Fock limit. Many types of calculations (known as post-Hartree-Fock methods) begin with a Hartree-Fock calculation and subsequently correct for electron-electron repulsion, referred to also as electronic correlation. As these methods are pushed to the limit, they approach the exact solution of the non-relativistic Schrödinger equation. In order to obtain exact agreement with experiment, it is necessary to include relativistic and spin orbit terms, both of which are only really important for heavy atoms. In all of these approaches, in addition to the choice of method, it is necessary to choose a basis set. This is a set of functions, usually centered on the different atoms in the molecule, which are used to expand the molecular orbitals with the LCAO ansatz. Ab initio methods need to define a level of theory (the method) and a basis set.

The Hartree-Fock wave function is a single configuration or determinant. In some cases, particularly for bond breaking processes, this is quite inadequate, and several configurations need to be used. Here, the coefficients of the configurations and the coefficients of the basis functions are optimized together.

The total molecular energy can be evaluated as a function of the molecular geometry; in other words, the potential energy surface. Such a surface can be used for reaction dynamics. The stationary points of the surface lead to predictions of different isomers and the transition structures for conversion between isomers, but these can be determined without a full knowledge of the complete surface.

A particularly important objective, called computational thermochemistry, is to calculate thermochemical quantities such as the enthalpy of formation to chemical accuracy. Chemical accuracy is the accuracy required to make realistic chemical predictions and is generally considered to be 1 kcal/mol or 4 kJ/mol. To reach that accuracy in an economic way it is necessary to use a series of post-Hartree-Fock methods and combine the results. These methods are called quantum chemistry composite methods.

No comments:

Post a Comment